Researchers clear hurdle to making primitive, synthetic cells
Researchers clear hurdle to making primitive, synthetic cells
HMS investigators at Massachusetts General Hospital have accomplished an important step toward their goal of creating primitive synthetic cells.
The “protocells” they are building consist of a nucleic acid strand encased within a membrane-bound compartment. The scientists faced what could have been a critical problem: incompatibility between a chemical requirement of RNA copying and the stability of the protocell membrane. In the November 28 issue of Science, they described their solution.
“For the first time, we’ve been able to do nonenzymatic RNA copying inside fatty acid vesicles,” said Jack Szostak, HMS professor of genetics and a winner of the 2009 Nobel Prize in Physiology or Medicine for his contribution to the discovery of the enzyme telomerase. “We’ve found a solution to a longstanding problem in the origin of cellular life: RNA copying chemistry requires the presence of the magnesium ion Mg2+, but high Mg2+ levels can break down the simple fatty acid membranes that probably surrounded the first living cells.”